\(\int \frac {x^5}{(d+e x)^3 \sqrt {d^2-e^2 x^2}} \, dx\) [179]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 177 \[ \int \frac {x^5}{(d+e x)^3 \sqrt {d^2-e^2 x^2}} \, dx=\frac {d^4 (d-e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d-e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {127 d^2 (d-e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}+\frac {3 d \sqrt {d^2-e^2 x^2}}{e^6}-\frac {x \sqrt {d^2-e^2 x^2}}{2 e^5}+\frac {13 d^2 \arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{2 e^6} \]

[Out]

1/5*d^4*(-e*x+d)^3/e^6/(-e^2*x^2+d^2)^(5/2)-23/15*d^3*(-e*x+d)^2/e^6/(-e^2*x^2+d^2)^(3/2)+13/2*d^2*arctan(e*x/
(-e^2*x^2+d^2)^(1/2))/e^6+127/15*d^2*(-e*x+d)/e^6/(-e^2*x^2+d^2)^(1/2)+3*d*(-e^2*x^2+d^2)^(1/2)/e^6-1/2*x*(-e^
2*x^2+d^2)^(1/2)/e^5

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {866, 1649, 1829, 655, 223, 209} \[ \int \frac {x^5}{(d+e x)^3 \sqrt {d^2-e^2 x^2}} \, dx=\frac {13 d^2 \arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{2 e^6}+\frac {127 d^2 (d-e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}+\frac {3 d \sqrt {d^2-e^2 x^2}}{e^6}-\frac {x \sqrt {d^2-e^2 x^2}}{2 e^5}+\frac {d^4 (d-e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d-e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}} \]

[In]

Int[x^5/((d + e*x)^3*Sqrt[d^2 - e^2*x^2]),x]

[Out]

(d^4*(d - e*x)^3)/(5*e^6*(d^2 - e^2*x^2)^(5/2)) - (23*d^3*(d - e*x)^2)/(15*e^6*(d^2 - e^2*x^2)^(3/2)) + (127*d
^2*(d - e*x))/(15*e^6*Sqrt[d^2 - e^2*x^2]) + (3*d*Sqrt[d^2 - e^2*x^2])/e^6 - (x*Sqrt[d^2 - e^2*x^2])/(2*e^5) +
 (13*d^2*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]])/(2*e^6)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 655

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[e*((a + c*x^2)^(p + 1)/(2*c*(p + 1))),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rule 866

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^(2*m)/a
^m, Int[(f + g*x)^n*((a + c*x^2)^(m + p)/(d - e*x)^m), x], x] /; FreeQ[{a, c, d, e, f, g, n, p}, x] && NeQ[e*f
 - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[f, 0] && ILtQ[m, -1] &&  !(IGtQ[n, 0] && ILtQ[m +
n, 0] &&  !GtQ[p, 1])

Rule 1649

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq,
a*e + c*d*x, x], f = PolynomialRemainder[Pq, a*e + c*d*x, x]}, Simp[(-d)*f*(d + e*x)^m*((a + c*x^2)^(p + 1)/(2
*a*e*(p + 1))), x] + Dist[d/(2*a*(p + 1)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^(p + 1)*ExpandToSum[2*a*e*(p + 1)
*Q + f*(m + 2*p + 2), x], x], x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[Pq, x] && EqQ[c*d^2 + a*e^2, 0] && ILtQ[p
 + 1/2, 0] && GtQ[m, 0]

Rule 1829

Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], e = Coeff[Pq, x, Expon[Pq, x]]}, Si
mp[e*x^(q - 1)*((a + b*x^2)^(p + 1)/(b*(q + 2*p + 1))), x] + Dist[1/(b*(q + 2*p + 1)), Int[(a + b*x^2)^p*Expan
dToSum[b*(q + 2*p + 1)*Pq - a*e*(q - 1)*x^(q - 2) - b*e*(q + 2*p + 1)*x^q, x], x], x]] /; FreeQ[{a, b, p}, x]
&& PolyQ[Pq, x] &&  !LeQ[p, -1]

Rubi steps \begin{align*} \text {integral}& = \int \frac {x^5 (d-e x)^3}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx \\ & = \frac {d^4 (d-e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {\int \frac {(d-e x)^2 \left (-\frac {3 d^5}{e^5}+\frac {5 d^4 x}{e^4}-\frac {5 d^3 x^2}{e^3}+\frac {5 d^2 x^3}{e^2}-\frac {5 d x^4}{e}\right )}{\left (d^2-e^2 x^2\right )^{5/2}} \, dx}{5 d} \\ & = \frac {d^4 (d-e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d-e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {\int \frac {(d-e x) \left (-\frac {37 d^5}{e^5}+\frac {45 d^4 x}{e^4}-\frac {30 d^3 x^2}{e^3}+\frac {15 d^2 x^3}{e^2}\right )}{\left (d^2-e^2 x^2\right )^{3/2}} \, dx}{15 d^2} \\ & = \frac {d^4 (d-e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d-e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {127 d^2 (d-e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}-\frac {\int \frac {-\frac {90 d^5}{e^5}+\frac {45 d^4 x}{e^4}-\frac {15 d^3 x^2}{e^3}}{\sqrt {d^2-e^2 x^2}} \, dx}{15 d^3} \\ & = \frac {d^4 (d-e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d-e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {127 d^2 (d-e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}-\frac {x \sqrt {d^2-e^2 x^2}}{2 e^5}+\frac {\int \frac {\frac {195 d^5}{e^3}-\frac {90 d^4 x}{e^2}}{\sqrt {d^2-e^2 x^2}} \, dx}{30 d^3 e^2} \\ & = \frac {d^4 (d-e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d-e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {127 d^2 (d-e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}+\frac {3 d \sqrt {d^2-e^2 x^2}}{e^6}-\frac {x \sqrt {d^2-e^2 x^2}}{2 e^5}+\frac {\left (13 d^2\right ) \int \frac {1}{\sqrt {d^2-e^2 x^2}} \, dx}{2 e^5} \\ & = \frac {d^4 (d-e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d-e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {127 d^2 (d-e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}+\frac {3 d \sqrt {d^2-e^2 x^2}}{e^6}-\frac {x \sqrt {d^2-e^2 x^2}}{2 e^5}+\frac {\left (13 d^2\right ) \text {Subst}\left (\int \frac {1}{1+e^2 x^2} \, dx,x,\frac {x}{\sqrt {d^2-e^2 x^2}}\right )}{2 e^5} \\ & = \frac {d^4 (d-e x)^3}{5 e^6 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {23 d^3 (d-e x)^2}{15 e^6 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {127 d^2 (d-e x)}{15 e^6 \sqrt {d^2-e^2 x^2}}+\frac {3 d \sqrt {d^2-e^2 x^2}}{e^6}-\frac {x \sqrt {d^2-e^2 x^2}}{2 e^5}+\frac {13 d^2 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{2 e^6} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.47 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.63 \[ \int \frac {x^5}{(d+e x)^3 \sqrt {d^2-e^2 x^2}} \, dx=\frac {\sqrt {d^2-e^2 x^2} \left (304 d^4+717 d^3 e x+479 d^2 e^2 x^2+45 d e^3 x^3-15 e^4 x^4\right )}{30 e^6 (d+e x)^3}-\frac {13 d^2 \arctan \left (\frac {e x}{\sqrt {d^2}-\sqrt {d^2-e^2 x^2}}\right )}{e^6} \]

[In]

Integrate[x^5/((d + e*x)^3*Sqrt[d^2 - e^2*x^2]),x]

[Out]

(Sqrt[d^2 - e^2*x^2]*(304*d^4 + 717*d^3*e*x + 479*d^2*e^2*x^2 + 45*d*e^3*x^3 - 15*e^4*x^4))/(30*e^6*(d + e*x)^
3) - (13*d^2*ArcTan[(e*x)/(Sqrt[d^2] - Sqrt[d^2 - e^2*x^2])])/e^6

Maple [A] (verified)

Time = 0.47 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.12

method result size
risch \(\frac {\left (-e x +6 d \right ) \sqrt {-e^{2} x^{2}+d^{2}}}{2 e^{6}}+\frac {13 d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{2 e^{5} \sqrt {e^{2}}}+\frac {d^{4} \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{5 e^{9} \left (x +\frac {d}{e}\right )^{3}}-\frac {23 d^{3} \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{15 e^{8} \left (x +\frac {d}{e}\right )^{2}}+\frac {127 d^{2} \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{15 e^{7} \left (x +\frac {d}{e}\right )}\) \(199\)
default \(\frac {-\frac {x \sqrt {-e^{2} x^{2}+d^{2}}}{2 e^{2}}+\frac {d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{2 e^{2} \sqrt {e^{2}}}}{e^{3}}+\frac {6 d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{e^{5} \sqrt {e^{2}}}+\frac {3 d \sqrt {-e^{2} x^{2}+d^{2}}}{e^{6}}+\frac {5 d^{4} \left (-\frac {\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{3 d e \left (x +\frac {d}{e}\right )^{2}}-\frac {\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{3 d^{2} \left (x +\frac {d}{e}\right )}\right )}{e^{7}}-\frac {d^{5} \left (-\frac {\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{5 d e \left (x +\frac {d}{e}\right )^{3}}+\frac {2 e \left (-\frac {\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{3 d e \left (x +\frac {d}{e}\right )^{2}}-\frac {\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{3 d^{2} \left (x +\frac {d}{e}\right )}\right )}{5 d}\right )}{e^{8}}+\frac {10 d^{2} \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{e^{7} \left (x +\frac {d}{e}\right )}\) \(406\)

[In]

int(x^5/(e*x+d)^3/(-e^2*x^2+d^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2*(-e*x+6*d)/e^6*(-e^2*x^2+d^2)^(1/2)+13/2*d^2/e^5/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-e^2*x^2+d^2)^(1/2))+1/
5*d^4/e^9/(x+d/e)^3*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)-23/15*d^3/e^8/(x+d/e)^2*(-(x+d/e)^2*e^2+2*d*e*(x+d/e)
)^(1/2)+127/15*d^2/e^7/(x+d/e)*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.07 \[ \int \frac {x^5}{(d+e x)^3 \sqrt {d^2-e^2 x^2}} \, dx=\frac {304 \, d^{2} e^{3} x^{3} + 912 \, d^{3} e^{2} x^{2} + 912 \, d^{4} e x + 304 \, d^{5} - 390 \, {\left (d^{2} e^{3} x^{3} + 3 \, d^{3} e^{2} x^{2} + 3 \, d^{4} e x + d^{5}\right )} \arctan \left (-\frac {d - \sqrt {-e^{2} x^{2} + d^{2}}}{e x}\right ) - {\left (15 \, e^{4} x^{4} - 45 \, d e^{3} x^{3} - 479 \, d^{2} e^{2} x^{2} - 717 \, d^{3} e x - 304 \, d^{4}\right )} \sqrt {-e^{2} x^{2} + d^{2}}}{30 \, {\left (e^{9} x^{3} + 3 \, d e^{8} x^{2} + 3 \, d^{2} e^{7} x + d^{3} e^{6}\right )}} \]

[In]

integrate(x^5/(e*x+d)^3/(-e^2*x^2+d^2)^(1/2),x, algorithm="fricas")

[Out]

1/30*(304*d^2*e^3*x^3 + 912*d^3*e^2*x^2 + 912*d^4*e*x + 304*d^5 - 390*(d^2*e^3*x^3 + 3*d^3*e^2*x^2 + 3*d^4*e*x
 + d^5)*arctan(-(d - sqrt(-e^2*x^2 + d^2))/(e*x)) - (15*e^4*x^4 - 45*d*e^3*x^3 - 479*d^2*e^2*x^2 - 717*d^3*e*x
 - 304*d^4)*sqrt(-e^2*x^2 + d^2))/(e^9*x^3 + 3*d*e^8*x^2 + 3*d^2*e^7*x + d^3*e^6)

Sympy [F]

\[ \int \frac {x^5}{(d+e x)^3 \sqrt {d^2-e^2 x^2}} \, dx=\int \frac {x^{5}}{\sqrt {- \left (- d + e x\right ) \left (d + e x\right )} \left (d + e x\right )^{3}}\, dx \]

[In]

integrate(x**5/(e*x+d)**3/(-e**2*x**2+d**2)**(1/2),x)

[Out]

Integral(x**5/(sqrt(-(-d + e*x)*(d + e*x))*(d + e*x)**3), x)

Maxima [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.05 \[ \int \frac {x^5}{(d+e x)^3 \sqrt {d^2-e^2 x^2}} \, dx=\frac {\sqrt {-e^{2} x^{2} + d^{2}} d^{4}}{5 \, {\left (e^{9} x^{3} + 3 \, d e^{8} x^{2} + 3 \, d^{2} e^{7} x + d^{3} e^{6}\right )}} - \frac {23 \, \sqrt {-e^{2} x^{2} + d^{2}} d^{3}}{15 \, {\left (e^{8} x^{2} + 2 \, d e^{7} x + d^{2} e^{6}\right )}} + \frac {127 \, \sqrt {-e^{2} x^{2} + d^{2}} d^{2}}{15 \, {\left (e^{7} x + d e^{6}\right )}} + \frac {13 \, d^{2} \arcsin \left (\frac {e x}{d}\right )}{2 \, e^{6}} - \frac {\sqrt {-e^{2} x^{2} + d^{2}} x}{2 \, e^{5}} + \frac {3 \, \sqrt {-e^{2} x^{2} + d^{2}} d}{e^{6}} \]

[In]

integrate(x^5/(e*x+d)^3/(-e^2*x^2+d^2)^(1/2),x, algorithm="maxima")

[Out]

1/5*sqrt(-e^2*x^2 + d^2)*d^4/(e^9*x^3 + 3*d*e^8*x^2 + 3*d^2*e^7*x + d^3*e^6) - 23/15*sqrt(-e^2*x^2 + d^2)*d^3/
(e^8*x^2 + 2*d*e^7*x + d^2*e^6) + 127/15*sqrt(-e^2*x^2 + d^2)*d^2/(e^7*x + d*e^6) + 13/2*d^2*arcsin(e*x/d)/e^6
 - 1/2*sqrt(-e^2*x^2 + d^2)*x/e^5 + 3*sqrt(-e^2*x^2 + d^2)*d/e^6

Giac [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 233, normalized size of antiderivative = 1.32 \[ \int \frac {x^5}{(d+e x)^3 \sqrt {d^2-e^2 x^2}} \, dx=-\frac {1}{2} \, \sqrt {-e^{2} x^{2} + d^{2}} {\left (\frac {x}{e^{5}} - \frac {6 \, d}{e^{6}}\right )} + \frac {13 \, d^{2} \arcsin \left (\frac {e x}{d}\right ) \mathrm {sgn}\left (d\right ) \mathrm {sgn}\left (e\right )}{2 \, e^{5} {\left | e \right |}} - \frac {2 \, {\left (107 \, d^{2} + \frac {445 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )} d^{2}}{e^{2} x} + \frac {665 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{2} d^{2}}{e^{4} x^{2}} + \frac {405 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{3} d^{2}}{e^{6} x^{3}} + \frac {90 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )}^{4} d^{2}}{e^{8} x^{4}}\right )}}{15 \, e^{5} {\left (\frac {d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}}{e^{2} x} + 1\right )}^{5} {\left | e \right |}} \]

[In]

integrate(x^5/(e*x+d)^3/(-e^2*x^2+d^2)^(1/2),x, algorithm="giac")

[Out]

-1/2*sqrt(-e^2*x^2 + d^2)*(x/e^5 - 6*d/e^6) + 13/2*d^2*arcsin(e*x/d)*sgn(d)*sgn(e)/(e^5*abs(e)) - 2/15*(107*d^
2 + 445*(d*e + sqrt(-e^2*x^2 + d^2)*abs(e))*d^2/(e^2*x) + 665*(d*e + sqrt(-e^2*x^2 + d^2)*abs(e))^2*d^2/(e^4*x
^2) + 405*(d*e + sqrt(-e^2*x^2 + d^2)*abs(e))^3*d^2/(e^6*x^3) + 90*(d*e + sqrt(-e^2*x^2 + d^2)*abs(e))^4*d^2/(
e^8*x^4))/(e^5*((d*e + sqrt(-e^2*x^2 + d^2)*abs(e))/(e^2*x) + 1)^5*abs(e))

Mupad [F(-1)]

Timed out. \[ \int \frac {x^5}{(d+e x)^3 \sqrt {d^2-e^2 x^2}} \, dx=\int \frac {x^5}{\sqrt {d^2-e^2\,x^2}\,{\left (d+e\,x\right )}^3} \,d x \]

[In]

int(x^5/((d^2 - e^2*x^2)^(1/2)*(d + e*x)^3),x)

[Out]

int(x^5/((d^2 - e^2*x^2)^(1/2)*(d + e*x)^3), x)